| ntroduction to Threads

Steve Karmesin
10 September 1998

Overview

What are the core ideas?
— Create, join, mutex, condition variables
Race conditions
— The*“dangling pointers’ of threads.
Benefits from using threads.
— Adaptivity, flexibility
How will POOMA |1 use threads?
— Conceptually
How might Tecolote use threads?
— Highlevel loops, clusters of threads.

Thread Libraries

* Pthreads o Tulip
— Procedural — Object Oriented
— Standard — Javainterface
— Provided by vendor — Provided by ACL
— Genera — Genera
— Often slow. — Fast
— Can sit on top of
pthreads.

Thread Creation

* pthread create - _

— thread id pointer

o, | Pitread create |
/

— function pointer Y
— datapointer
* Creates anew thread. - — \I\
* Thread runsthe function, -

and the caller continues.

* Thread exits when the
function returns. -

Write To Disk

Generate athread to
asynchronously write data to
disk.

Open thefile

Write the data

Closethefile

No synchronization is needed.
Allows the main thread to go on
while the disk 1/0 is happening.
Also need to delete the data
structures.

struct data_t {
char *file;

I

double *p; int n;

voi d *dunp(void *vp)
{
data_t *p = vp;
FILE *fp = fopen(p->file,"wW);
fwrite(p->p,sizeof(double),p->n,fp);
fclose(fp);
}
mai n()
{
pthread_t id;
pt hread_creat e(& d, NULL, dunp, dat ap) ;

M utex

Only one thread can lock a mutex
at onetime.

Anyone else trying to lock it will
wait.

pt hread_nutex_t nutex;

pt hread_nut ex_| ock(&rut ex) ;
pt hr ead_rut ex_unl ock(&t ex) ;

Waiting on a mutex often means
spinning
Should usually only try to lock

mutexes when you expect to get it,
but want to be safe.

Bad Barrier

/1 Barrier for n threads.
Barrier(int n)

{
static int count = O;
i f (count==0)
count = n-1;
el se
count -= 1;
while (count > 0) ;
}

e What is supposed to happen
— First thread sets count =n-1
— Next threads decrement count

— Everybody waits until all
decrements are done.

Lots of ways this can go wrong
if multiple threads enter at
about the same time.
— Multiple threads see count==
before one writes count=n-1
— count-=lisreally read,
subtract, store, and multiple
threads could read before any
write.
These are classic race
conditions.

Better Barrier Using Mutex

/1 Barrier for n threads.

Barrier(int n)

{
static int count = 0O;
static pthread_mutex_t

nut ex=PTHREAD_MUTEX_I NI T;
pt hr ead_nut ex_I| ock(&t ex) ;

i f (count==0)
count = n-1;
el se
count -= 1;

pt hr ead_nut ex_unl ock(&ut ex) ;

while (count > 0) ;

Fixes the problems noted in the
previous.

— Only onethread can bein the
section that modifies count at
onetime.

Thereis gtill aproblem
though...

— Two barriersin arow.

— Count goesto zero, some
threads go into the next barrier
and sets count again before all
the threads |eave the while
loop.

Condition Variable

“Wake me up when something
happens’

Useful when you think
something will happen
someday and you want to wait
until then.

One or more threads wait.
One signals them.

Exact syntax isfussy, haveto
use amutex to lock access.

/_

IR

The network

L
.
A

<

Join

Wait for another thread to
finish.

Useful when you generate a
bunch of workers, and want to
wait until they all fiinish.

Join waits for one thread at a
time.

To wait for N threads, join one
at atime.

Race Conditions

Any thread code should be
prepared for any or all threads
to stop at any assembly
language instruction and start
up again unpredictably.

Getting thiswrong is the

equivalent of dangling pointers.

— Unrepeatable, random, nasty
errorsthat are very difficult to
find.

— No purify. Nolint.

» Understanding

— Know arace condition
when you see it.

o Carefulness
— Bewatchful when
coding.
» Discipline
— Good idioms.
— Don't get lazy.

Why Use Threads Then?

Performance
— Use shared memory instead of
packing buffers for MPI.
— Schedule threads for cache
reuse.
Load Balancing
— If threads can migrate within
an SMP, you automatically get
load balancing within the
SMP.
— 48ismuch nicer than 6000 for
load balancing.

» Overlap communication and

computation

— Put send and receive right next
to each other in the code, but
the thread scheduling reuses
the processors.

e Adaptivity

— Adaptivity ismuch ssimpler to
express because the threads
themselves are adaptive.

* None of these are impossible

w/o threads, just much easier
with them.

POOMA Il Interna Threads

POOMA seestheworld asa
series of expressionsto
evaluate.

— A=B+C*D
POOMA | bresksthe
expression down into pieces
(vnodes) and evaluates them on
every CPU.
One “parse thread” per CPU
(per MPI process).

POOMA 11 aso seestheworld
in terms of expressionsto
evaluate.

POOMA 11 aso breaksthe
expressions down into pieces
for evaluation.

It then hands those pieces off to
threads for evaluation.

One parse thread per a cluster
of CPU’s, perhaps one per
SMP.

Many worker threads.

L ock-Step Implementation

Suppose we did thread create
and join for each expression.
A=B+C*D would loop over
vnodes, could generate a thread
per vnode, then wait until they
al finish (using join).
Advantages over current:

— Load balancing on box

— Possible overlap of GC fill.
Disadvantages over current:

— Thread creation and
destruction time.

A=B+C*D

/

Each line finishes before
the next one starts.

Overlapping |mplementation

Instead of joining at the end of
each statement, allow more
overlap.

“Parse thread” runs through the
user code.

Generates worker threads.
Parse thread could get way
ahead of workers.

If some workers need
communication, they wait, and
something else runs.
Auto-load balance inside SMP.

Data Dependencies

Previous example had no data
dependencies.

With data dependencies, some
threads can’t run until others
finish.

Can handle this with condition
variables (POOMA 1l actually
does something fancier...)
Threads sleep until their datais
available.

Schedule threads to use data
that has just been released.

How Tecolote Might Use Threads

« Whenever you have aloop,
think about using threads.

 If they’re independent and
they’re pretty big, generate a
thread for each and join at the
bottom of the loop.

for (n=0; n<nmats; ++n)
do_material (n);

could turn into:

for (n=0; n<nnats; ++n)

pthread_create(do_naterial,n);

for (n=0; n<nnats; ++n)
pt hread_j oi n(n);

» Thingsto watch out for:
race conditions.

— If the different materials
accumulate into any
common arrays, protect
with mutexes.

— If you read something
someone else iswriting,
you'll need to serialize
somehow.

